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AbstracNTCP Cubic is designed to better utilize high  window of 10 Cubic TCP RBows established between the same
bandwidth-delay product paths in IP networks. It is currently pair of sender/receiver that compete for a shared bottleneck,
the default TCP version in the Linux kernel. Our objective in obtained with ns-2, in Figure 1a. The clear Cubic shape that
_this work _is to t_)etter understand the performance of TCP Cubic appears regularly indicates that the Bows are synchronized
in scenarios with a large number of competing long-lived TCP 13516 details on TCP Cubic is provided in Section I1l). Note
Bows, as can be observed, e.g., in cloud environments. In SUCh ¢ he code of Cubic in ns-2 is a fork of the one in the Linux

situations, Cubic connections tend to synchronize each other and K L O bvi I that the simulati ¢
this synchronization is higher than with TCP New Reno. We ernel. ne can obviously argué that the simuiations set-up

investigate this phenomenon in detail through experimentationsin ~ d0€s not catch the complexity of a real operational IP network,
a controlled testbed, measurements with Amazon EC20s servers, and thus synchronization might be the result of idealized
located in the US and simulations. simulation conditions. This is why we present in Figure 1b
We demonstrate that several factors contribute to the appearance the congestion window evolution of 10 transfers in parallel
of synchronization in TCP Cubic: (i) the rate of growth of the  between a server in Amazon data center of Oregon and a
congestion window when a Cubic source reaches the capacity of server in our lab. We have obviously no control on the path, but

the way the congestion Cubic tracks the ideal cubic curve in the g of them highlighted here by red rectangles for an easier
kernel (as the congestion window grows in a discrete fashion in reading)

units of MSS while the cubic curve assumes a Ruid window), (iii)
the competition among the Cubic sources and the aggressiveness
of the sources that did not experience losses during the last loss
episode. 4000
We also propose and evaluate two propositions to the TCP Cubic 3500}
algorithm to alleviate the amount of packets lost during the
synchronization episodes.
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Massive data transfers are common in typical cloud sce-
narios, either within the data center itself or between the
data center and the customer premise. In such a scenario, t
transport layer, namely TCP, is put under pressure and mig
suffer performance problem, e.g., the TCP incast problem
(which is observed when a large number of storage devices
simultaneously send data chunks to a single machine leading
to congestion at the switch servicing the machine [1]).
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Total window size (ns-2): 10 TCP Cubic Bows,sharing a common
ttleneck

Cloud environments are characterized by plenty of band-
width. Modern versions of TCP such as Cubic, are designed
to work efbciently in such situations as they are able to probe
for available bandwidth in a non linear fashion, unlike TCP
New Reno, which in3ates its windows by one MSS per RTT ‘ ‘
in stationary regime. However, there is a price to pay for % w0
being more aggressive: the fairness offered by Cubic and other _
high speed versions of TCP is not as high as legacy TCIﬁb) 10 TCP Cubic transfers between France (I13S lab) and Amazon
versions [2]. Several studies also pointed out the appearance B2 data center of Oregon
synchronization among competing Cubic Rows [3]. The latter
means that Cubic Bows, when competing for a bottleneck, tend Fig. 1: Synchronization in TCP Cubic
to loose packets at the time instant and the resulting aggregated
throughput time series exhibit a clear Cubic behavior as if a
single Bow was active.

Congestion window (packets)

50 70 80 90
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We study the extent and the root causes of synchronization
using an experimental approach with a testbed hosted in
In this work, we investigate the issue of synchronizationour lab combined with simulations. The former enables to
among TCP Cubic sources in detail. As a motivating examplexperiment with actual protocol implementation in a controlled
of the problem, consider the time series of a total congestioenvironment while the latter permits to explore a wider set of
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network scenarios. between Rows. The authors studied several high speed version
of TCP and observed, through simulation, the existence of

synchronization among sources for all Ravors of high-speed

TCP.

¥ We experimentally establish the relation between the |, 18] the same authors evaluate the potential impact of
existence and extent of synchronization with key pa-

‘ . he Random Early Detection (RED) [9] queue management
rameters like RTT and buffer size. We demonstrate; o rithm on high-speed TCP versions. They study the rela-

the resilience of synchronization to background trafPcyiqn herween buffer size, active queue management and loss

and how the Fast Convergence option, which aims agy - ronization. Their study focuses on several metrics: loss

making C.Ub'(.: more fair to fres_h connections, C""talyzessynchronization, goodput, link utilization, packet loss rate, and

synchronization. For this point and the subsequengqnyergence to fairness for high-speed Bows. For large buffers,

ones, we use New Reno as a reference point. RED strongly reduces the synchronization rate as expected,
¥ We demonstrate that several factors contribute to thevhereas with droptail, the fraction of synchronized sources is

appearance of synchronization in TCP Cubic: (i) theoften close to 100%. In contrast, with medium to small buffers,

rate of growth of the congestion window when a Cubicthe loss synchronization is roughly similar with both types of

source reaches the capacity of the network and it§lueue management strategy.

relation to the RTT of the connection, (ii) the way the

congestion Cubic tracks the ideal cubic curve in the I1l. BACKGROUND ONTCP QuBIC

kernel, (iii) the competition among the Cubic sources ) L .

and the aggressiveness of the sources that did ndt Window variation in TCP Cubic

experience losses during the last loss episode. When in congestion avoidance, TCP Cubic features two

¥ We propose and evaluate two approaches to reduc@OdeS of Operations_, the SO'Ca”ed_ TCP and CUb|C modes
the level of synchronization and hence the loss ratd4].- The TCP mode is to be used in low bandwidth delay
of TCP Cubic transfers. Perhaps more importantly, weProducts (BDPs), while the Cubic mode is triggered for high
provide hints that synchronization is the price to pay toBDPs. Each mode corresponds to a specibPc way of increasing
have a high-speed TCP version that needs to exp|0rg1e W_lndow size and is determined by the following pair of
the available bandwidth in the network in a super-€guations:
linear manner. It is probable that we can alleviate _ 3
synchronization, as OFl).lr modibcations of TCP Cubic We(t) = C(t! Veunic )™ + Wmax (1)

do, but eliminating it out completely will be a complex 3! t
task. ’ ey P Wigp (1) = Wnax (11 1) + @! R @)

II. RELATED WORK wherewnay is the congestion window prior to the last loss
) event, R(t) is the estimated RTT of the connection,and
A. TCP Cubic C are constantvalpes usually setdt@ and0.4, respectively,

Various congestion control strategies for TCP have beemndVcyic = 2 'W+ The congestion window sizewvnd(t)

designed to meet the ever-changing networking requirements get tomax (We(t), Wiep (t)) upon each ACK reception. TCP

of the Internet, especially Cubic TCP [4], which is the defaultcypic is thus said to operate in Cubic mode (resp. TCP mode)
TCP version in recent Linux kernels, Fast TCP [5] or CTCPjf the maximum iswc(t) (resp.Wiep (1) )-

6].

o] _ : ) o _ The equation ofwc(t) is designed in such a way that
The focus of this paper is on Cubic, which is characterizedyhen 5 TCP Cubic connection is operating in the cubic mode,

by a Cubic window growth function [4]. The aim of Cubic it converges quickly tovmax . Then it plateaus for a while,

is to achieve a more fair bandwidth allocation among Bowsyefore increasing again to probe the link to sense whether

with diff_erent RTTs (round trip times) by making the window ,ore pandwidth is available in the path (see Figure 2).
growth independent of the actual RTT.

Our contribution to the study of the synchronization of TCP
Cubic are as follows:

Upon detection of a lossymax is set to the last congestion
dow cwnd(t), before the congestion window be reduced
y 20%. In case the lastmax Was larger than the congestion

In order to understand how Cubic behaves in data centersyin
we designed a Buid model for Cubic, presented in [7], that,

"’;:IOWS. tg preghct va;Ir\llouls mﬁtrlgs, such as dIStI’IbutI'On Of\window when the loss is detected, and if the Fast Convergence
the window sizes ofN long-lived competing connections, echanism is appliedymax is set t00.9" cwnd. This is what

throughput, RTT, loss rate and queue size. The model ifanheng in Figure 1a, where we observe that the plateau is
validated against ns-2 simulations in typical cloud scenariosgometimes at a lower level than the maximum.

The bt is very good when Cubic operates in TCP mode, while
it is less satisfactory when in pure Cubic mode. The reason Another major difference between Cubic and previous
behind this latter observation is that our model does not captur€CP versions is that the congestion window increase is not

the high synchronization among the competing Bows. correlated to the RTT. Indeed the amount of packets by which
the congestion window must be increased depends only on
B. Synchronization the time elapsed since the last congestion event. In contrast,

In [3], Hassayoun and Ros found that high-speed VFj‘rSiQnS INote thatwmax iS varying over time but is constant between two loss
of TCP may be prone to strong packet-loss synchronizatiomvents. This is also the case Mg ypic -
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with standard TCP, Bows with very short RTTs increase theiB0%, 50%, 100% of the bandwidth delay product BDP (i.e.,
congestion windows faster than Rows with longer RTTSs. the product of the minimum latency and the capacity of the
path). For each scenario, we compare the performance of

Concerning the TCP_mode, we can note thag, (t) Cubic with the ones of NewReno. NewReno is used here as a

depends both on the RTT of the connection and the tim . . o "
elapsed since the last loss event. Thus, in practice, when t;.Easelme for comparison as it is known to be less sensitive to

RTT is low, w, (t) ensures that the window increase of TCP ?/nchronlzatlon than any high speed TCP version.
Cubic is not slower than one of New Reno. .

oA Bottleneck
e oint
B. TCP Cubic mode of operation {‘J’\j
N > =
TCP operates either in TCP or Cubic modes. The Cubic S '

Bottleneck Link
mode depends on the bandwidth delay product of the path, IperfClient Netem Router IperfServer
through the value ofvmay, While the TCP mode depends on (mprTat)

the RTT. The net result, for a given path with a minimum (a. ;

latency RT Tpin , is that TCP Cubic operates either in TCP Fig. 3: Experimental network setup
or in Cubic mode. We can observe an alternation of modes if

RT Tmin is below the threshold that triggers Cubic while it is

above when the buffer starts Plling up and the RTT increases, .
At 100 Mb/s, the latency of the path that ensures that TCP 8- Scenarios

always in Cubic mode is 39 ms, while at 1Gb/s, itis 18 ms.  \\e consider, similarly to [7], several typical cloud net-

To bnd those values, one needs to consider the differenc@orking scenarios:
D(t, RTT,Wmax ) = Wc(t) ! wyep (t). We can see in Figure 2
that this difference brst increases withthen decreases and
increases again. We set RTT RY Tmin @sWicp (t) decreases
with an increasing RTT. The minimum of the function is
obtained for:

¥ Scenario A - Cloud-clients. We consider here a set
of clients that simultaneously download content from
a data center (DC). We assume that they share the 1
Gbps access link of the DC and that they have a low

1 path latency to the DC, 20 ms (a typical latency for
! 2 FTTH clients in France).
to(RTT, Wnax ) = W + Veubic - )
. ¥ Scenario B - Intra-DC. We consider a set of transfers
One next PndsRT Tmin such thatD (t, RT Tmin , Wmax ) IS within a data center (DC) where the path capacity is
positive, which ensures that the Cubic mode dominates. set to 1 Gbps while the latency is low, 1 ms, ref3ecting

the small physical distance between the servers.

¥ Scenario C - Inter-DC. This scenario is similar to the
previous one, except that the path latency is one order
of magnitude higher. We consider 50 ms of latency.

Links between machines in our testbed are at 1Gbps.
However, we cannot operate netem at such a high speed when
controlling both the capacity and the buffer size. We thus
constrain the capacity to 100 Mb/s and we in3ate the latency
of the path in such a manner that the bandwidth-delay product
of the path be the same or similar to the consider scenario.

wt;p(t)

Fig. 2: Congestion window growth of TCP Cubic in Cubic and

TCP modes.
V. SYNCHRONIZATION IN TCP QuBIC
A. Cloud center scenarios
IV.  EXPERIMENTAL SET-UP 1) Scenario A (Cloud-clients): Table | contains the targeted
A. Testbed (ideal) parameters of the scenario, as well as the ones used in

) o our testbed due to our technical constraints. Note that we debne
We have created a set of experimental scenarios in oujereafter the bandwidth-delay product of a path (BDP) as the

laboratory using the testbed presented in Figure 3. It consisisroduct of the capacity of the bottleneck and the minimum
of 3 multi-core Dell servers, 2 acting as TCP client or servefatency of the path.

and one as router. All links are 1 Gb/s links. The router uses

netem? to control the path latency and capacity, and also the ideal parameter] _ Testbed parameter
buffer size at layer 3. We use the default FIFO/droptail as Throughput 1 Gbps 100Mbps
server scheduling/queue management policy at the bottleneck. gl s 2 e Er . T
Various scenarios are created by varying the latency and BDP (packets) 1667 1667
buffer size. We set the buffer size at the router{tt0%, TABLE I: Cloud clients scenario

2http://www.linuxfoundation.org/collaborate/workgroups/networking/netem
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We vary the buffer size (BS) at the bottleneck from 10%smaller synchronization is detected. Indeed, the reduction of
of the BDP to 100% of the BDP for both Cubic and New the total congestion window is less than 20%. Figure 6 shows
Reno. We report results only for 100% BDP owing to spaceclearly that the number of losses per congestion event and
constraints. synchronized Rows approaches the one of TCP New Reno.

Time series of the total window size of one of our 100Mbps, RTT=10ms, BS= 1000 packets

---Cubic
—New Reno|

1400
2

experiments taken at random (which were all quantitatively
and qualitatively similar), summed over all the connections, is
presented in Figure 4, for both Cubic and TCP New Reno.
From this bgure, we note that:

1300f + 4

1200

N
1)
S
S

¥ The congestion window for Cubic reaches larger val-
ues compared to New Reno. This means that the
number of packets abovBDP + BS is larger in

Cubic than in New Reno, which causes more losses . . .
with Cubic. Fig. 5: Total window size (packets)

©
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¥  Cubic Bows are more synchronized than New Reno.
This is indicated by the window reduction during loss 100N, R T10ms, BS-1000 packets, Cubi

episodes closes to 20%. Indeed, a reduction of 20% of 100
the aggregated congestion window is only possible if a0l
all sources experience packet looses simultaneously.

60

In contrast, in the New Reno case, Rows are less —Number of synchronized flows ]

synchronized giving an overall window decrease after aof RS SLOSLpRCIE e 0% v

loss clearly smaller than 50% (NewReno decreases its o

congestion window by 50% upon loss detection). N TRy PR A T N e
NIRLLY; ) N DA
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Time (seconds)

100Mbps, RTT=200ms, BS = 1 BDP

‘@ 40001

(a) Cubic, BS = 1000 packets

100Mbps, RTT=10ms, BS=1000 packets, New!Reno
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Fig. 4: Total window size (packets) 0 10 20 30 4g 50 O 70 80 w0 100
(b) New Reno, BS = 1000 packets

2) Scenario B (Intra-DC): Table Il contains the targeted
(ideal) parameters of the scenario, as well as the ones used
our testbed.

Fig. 6: Number of synchronized Bow and lost packets at each
é'angestion epoch

Ideal parameter| Testbed paramete . .
Throughput 1Gbps 100Mbp 3) Scenario C (Inter-DC): Table Il contains the targeted
RTT (ms) 1 10 (ideal) parameters of the scenario, as well as the ones used in
Buffer 50 1000
5P o o our testbed.
. Ideal parameter| Testbed parameter
TABLE II: Intra-DC scenario ThrGUGhPUT 1gbps 100!5Ibp
RTT (ms) 50 500
Buffer 500 [0.1, 0.3, 0.6, 1]* BDP
BDP 4167 4167

The BDP for this scenario is equal to 84 packets. If one
adds to it a buffer size equal to the BDP, it gives an average of
1 packet per Bow which is low for our 100 Bows in parallel.
In such a scenario, the Linux kernel reduces automatically the
MTU to values as low as 40 bytes. This phenomenon leads to For large BDP, the congestion window growth for New
different congestion window sizes to obtain a bxed bandwidthReno is much slower compared to Cubic, so we double the
making the analysis of results more complex. To work aroundimulation time for New Reno to 200 seconds instead of 100.
this issue, we used a larger buffer of 1000 packets. For the sake of space, we only we present the results for BS

We report in Figure 5 the time series of the total congestion: 0.6 BDP.

window of both Cubic and New Reno. Note that in this  With the larger BDP of this scenario, Cubic TCP operated
case, Cubic operates in the TCP mode, and therefore, ia its cubic mode and we observe again a high synchronization

TABLE IlI: Inter-DC scenario
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100Mbps, RTT=500ms, 100 flows

of Cubic sources B see Figure 7, where the number of 12000,
synchronized Rows for Cubic is close to 100 while it is below

30 for NewReno. 10000}

100Mbps, R 1=500ms, BS= 0.6 BLP, 1CP Cubic

# Number of synchronized flows
800 #Number of lost packets at every loss event

Hon_ o Hns
B e
i i | i i ,
qO 20 30 40 50 60 70 80 20 100 110
Time (seconds)

(a) Cubic, BS = 0.6 BDP
100Mbps, BRI 1=500ms, BS= 0.6 BDP, 1CP New-Heno

80/\’/\\__‘

# Number of synchronized flows
“Number of lost packets at every loss event

i i i , i |
60 80 100 120 140 160 180 200 220
Time (seconds)

80001

60001

---Without Background traffic
4000F —With Background traffic

Congestion window (packets)

I I I I )
20000 50 100 150 200 250 300
Time (seconds)

Fig. 8: Time series of window size (packets) with and without
background trafpc, BS= 1 BDP

It is thus not advisable to unset this option in the general
case. Still, when focusing on the issue of synchronization,
FC becomes a potential suspect of synchronization. Indeed,
when performing FC, a source sets\ifg.x to a value lower
than the estimated available bandwidth (the congestion window
at the moment where loss occurs). As a consequence, when
the number of RBows is constant, as it is the case in our

(b) New Reno, BS = 0.6 BDP experiments, when a source performs FC, it will reach the

available throughout (its share BS +BDP ) in an aggressive
Fig. 7: Number of synchronized Row and lost packets at eacmanner Dsee for instance Figure 1a. This aggressive behavior
congestion epoch around the equilibrium point can make all sources (even the
ones that would plateau at this level) loose some packets and
thus enforce their synchronization.

B. Synchronization vs. background traffic To test the relation between FC and synchronization, we
A well-known mechanism to combat synchronization con-Performed again experiments with Scenario C with an without

sists in introducing randomness into the network. This can b&C for a typical run. We report in Figure 9 the total window

done by introducing background trafpc or inducing randonfime series with and without FC. As the extent of window

drops through an appropriate buffer management mechanis@$cillations remains similar, we can conclude that FC is not
such as RED [10]. the only factor behind synchronization.

It is known that RED can indeed break synchronization
among Cubic sources [8], even though the results in [8] where
obtained purely through simulation. We tested in our tesbed
the resilience of synchronization to background trafbc. We
thus performed again experiments with Scenario C, where
synchronization was highly pronounced, adding 100 short
Bows during the experiment. These Bows are short scp transfer.
They form a Poisson process with mean inter-arrival time of
1s. The ples sent through scp have a size equal to 2MB.

Cubic, 100Mbp, RTT=500ms, Buffer=1BDP
120001

---With Fast!Convergence
— Without Fast!Convergence

iy
[
o
=]
]

10000
9000
8000
7000
6000

Congestion window (packets)

5000

Background trafbc starts at time t = 200 seconds in Figure 4000y 20 80 100

8. We can notice that the overall window is reduced and

reaches a value lower than 2BDP, but the Cubic shape dfig. 9: Time series of total window size (packets) with and
the total window persists, meaning that all Bows are stillwithout FC, BS= 1 BDP

synchronized.

40 60
Time (seconds)

In this article we did not tested the case of Rows with het-
erogeneous RTTs. Moreover, experiments carried out in [11] VI. ROOT CAUSE OF SYNCHRONIZATION
show that two Bows having different RTTs get synchronized. i i i .
Indeed, even though Rows gets different amount of bandwidth, AS observed in Section V, TCP Cubic experiences more
when congestion events occurs, both Bows suffer from packé@sses than standard TCP per congestion event. Therefore,
losses. Such results suggest that even if Bows have differeftubic senders have a higher probability to be synchronized.

RTTSs, synchronization occurs. Intuitively, high speed TCP variants are more aggressive
and therefore, lead to a higher drop rate as compared to the
legacy New Reno approach, where the congestion window
Fast convergence (FC) is designed to make Cubic more fagrows linearly. While this is true for other high speed TCP
as it leaves a chance to fresh Bows to grab some bandwidtprotocols, like High Speed TCP, in the case of Cubic, if the

C. The impact of Fast Convergence
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Bat part of the cubic function matches the optimal networkmild. If they send two packets or more, synchronization will
capacity, then we can expect to have (at least for this optimabe high.
scenario) a low drop rate. Indeed, Cubic is supposed to slowly

enter and exit the Rat part. First scenariowmay = BDP +BS. If cwnd = wpa +1

leads to a congestion, since betweepyx +1 andwpax +2
In fact, several key reasons explain why TCP cubic 3owshere is a period equal to 0.35s, Rows with a total RTT (i.e.
synchronize each other: propagation delay plus buffering time) smaller than 0.35s will
. . . detect the congestion atm.x + 1. Flows with RTTs larger
¥ First, the way TCP cubic reaches the capacity of thnapn 0,355 can potentially detect the congestion only when
ne.twork, which mlght' correspond to its equilibrium ; Wmax + 2 (i.e., in a single RTT, such a Cubic Row will
point (when the cubic curve becomes Raf) or not,ncrease twice its congestion window). Note that whatever the
depending on the accuracy of the estimate made.  RTT experienced by New Reno TCP, this last protocol is able
¥ Second, the way the congestion window actuallyto detect a congestion 'when the congestion _wind'ov_v exceeds
tracks the cubic curve in the actual implementation carihe total network capacity by only 1 packet, since it increases
worsen the synchronization phenomenon by lettingits window by at most one MSS per RTT.
the source remains a smaller amount of time on its  ggong scenariowns = BDP + BS ! 1. When

plateau. we(t) = Wmax + 2, congestion occurs but since between

¥  Third, the competition among TCP Cubic Rows whereWmax +2 andwmax + 3 there is a period equal to 0.25s, if the
the aggressive nature of their probing process faiotal RTT is larger than 0.25s, the connection will potentially
from the equilibrium point can lead to losses for all increase its congestion window twice (or more depending on
competing Rows. the experienced RTT) ending with a congestion window equal
10 Wmax + 2 or more.
We discuss each of these points in details in the remainder

of this section. Third scenariowmax = BDP +BS + 1. If wc(t) = Wiax

already exceeds the total network capacity by one packet, since

betweernwnax andwna + 1 there is a period equal to 1.35s,

theoretically, only Bows with an RTT larger than 1.35s will
Let epochstart be the time right after a congestion event increase twice their congestion windows before detecting a

(i.e. to = epochstart). Hence, atty, the Cubic window will  congestion. Hence, after a congestion event,x Will be set

be equal t00.8 " last_cwnd. Using Eqg. (1), we can see that again town.x = BDP + BS + 1 and the number of losses

theoretically, whatever the value of,ax and the experienced will be small. We want to highlight that the theoretical Cubic

RTT are, wc(t) will reach wnax at tmax = epochstart + target is able to converge tova,,x = BDP +BS + 1 from

Veubic - Furthermorewc(t) will reach Wipax + 1, Wmax + 2, any Wmax Vvalue, like shown in Figure 11.

Wmax +3 andWpmax +4 attmax +1.35S, tmax +1.7S, tmax +

A. Behavior of TCP Cubic around the equilibrium point

1.95 andtax +2.15. Therefore, while there is 0.35s between ST O 17 (L 1(=" 4 (/F0)* (L*
Whmax +1 andwpnax + 2, there is only 0.2s betweely x + #3 “ O
3 and wnax + 4 respectively. Indeed, as.(t) moves away — ,-./01
from wmax , it increases faster. Figure 10 provides a graphical T N
description of the period length between 2 successive expected
increases of the congestion window. /
Target Evolution
90 4
(4.78,82) /
85 4
(1.43,78) (3.13,80) $\ % T
417" *45+6

Fig. 11: Converge properties of the optimal congestion window
(BDP +BS = 80).

Packets

(4.48.81)
[1.78.79)

= target (Wmax = 80 pkts)
— Optimal congestion window

65 4 T S 5 N

To sum up the three above scenarios: (i) overestimating

1 2 3 4 5 6 the bottleneck is not a big issue as there is little chance
Time (s) that the sources increases several times its congestion window
Fig. 10: Target Evolution when entering the Rat region (it should be larger than 1.35s);

(i) precisely estimating the bottleneck precisely means that
the source will be too aggressive if the RTT is larger than
Consequently, three different scenarios can be drawn, bas€d35 s and (iii) if the source underestimates the capacity, the
on the relative positions of the at region and the total networlRTT for which it becomes too aggressive is 0.25s. The latter
available capacity, i.e. BDP+BS. We seek to understand whescenario is thus the more dramatic one. We can note that Fast
a source is going to send more than one packet in an RTT whe@onvergence, that forces to set Wg,ax equal t00.9" wc(t)
reaching the network capacity. Indeed, if each source adds @pon a loss leads exactly to the latter scenario. FC is thus a
single packet, like in New Reno, synchronization should benet contributor to the too high aggressiveness of a TCP Cubic
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source. the equilibrium point. In contrast, the ones that did not loose
. . . enter the aggressive probing part of the cubic curve. Even, if
As an illustrative example, the Amazon EC2 experlmen#’fey are just leaving their plateau as it is the case here, the

presentedd ig Figure 1b V{%‘Z a cals_|e wherehthe %?f‘e F\t)h umber of losses that they induce in the buffer is such that all
(measure y ping) was ) MS. Hence, when adding ur sources losse packets at the same time instant, i.e., they
buffer size along the path (which we do not know), there is &ecome synchronized

high probability that the RTT will be above 250 ms. This RTT
combined with the use of Fast Convergence explains why we 100Mbps, RTT=500ms, BS= 0.1 BDP

observe episodes of synchronization. —Flow 1
L —Flow 2

The above analysis assumes a perfect source in isolation. Ir g *%° —Flow 3
—Flow 4

practice, the actual implementation as well as the competition
among Cubic RBows worsen the situation as we discuss below.

2]
o
T

D
o
T

B. Tracking of cubic function in the actual implementation of
TCP Cubic

IN
<)
-

Congestion window (packets)

26 30 32

In the real life, the tracking of the target window is not 24 Timé (seconds)
perfect. We have extracted the algorithm used by TCP Linux ) ) ) } o
from ns-2, which is supposed to be the same as the one in Fig. 13: Cubic leading to high synchronization

some Linux kernels, to build our own simulator and be able

to trace the several variables used inside. We have found that,

assuming a constant reception of ACKs and a total RTT ofD Discussion

one second, when the congestion window reachgs; , it '

will stay in the Rat region for period shorter to 1.35s (around  From the analysis presented above, it is clear that the
0.8s as we can see in Figure 12). Such a result was conbrm@{'T of the connection plays a key role to determine the
by ns-2 assuming the same RTT. Staying a shorter period devel of synchronization we might expect. Referring back to
the plateau can lead to have too many losses when gettinge methodology presented in Section V, it becomes clear,

above the network capacity. in light of what we discussed in this section, that increasing
the RTT to obtain the same BDP as in the ideal cloud
VA % &' WY, - /4 scenarios that we devised, was introducing a bias towards more

synchronization. For the intra data-center scenario (scenario B)
where the ideal RTT was 1ms, synchronization is likely not
to occur. This is conbPrmed by our experimental results (see
Figure 6a) because the RTT in the experimental testbed is still
low (10ms). It should be the same in the inter data-center
~ )R, - /0,)21,3+4 case (scenario C) where the ideal RTT is 50 ms, while we
—)RI0.921,304 observed synchronization by working at 500 ms. It is even
TR T highly possit_JIe that C}ubic operates in_ thg TCI_D mode and

v not the Cubic mode in such a scenario, in which case the
means-Peld model that we proposed in [7] demonstrated that
no synchronization should be present.

Fig. 12: More real Cubic congestion window evolution.

As illustrative examples of the above points, we report in
. dth ilibri . Figure 14a a typical experiment made between a pair of servers
C. Competition around the equilibrium point in the Oregon data center of Amazon where the RTT was in

Let us suppose that during a given congestion event, the tdhe order of a ms. We never observed any synchronization in
tal capacity was exceeded bypackets only (where is equal  this case (out of the numerous trials we made). While Figure
to the number of Bows) as the legacy New Reno version of4a reports the congestion window of each individual Bow,
TCP does, and that the congestion window of each Cubic Bowsigure 14b reports the aggregate congestion window and we
was equal to the actual share that each connection deserv€8n observe that it never decreases by 20% (as 80% of 1200
In this scenario, it is highly likely that not every Row would is 960 and we are always above this line).

experience a packet loss. Put differently, the synchronization The previous experiment was obtained with 10 Bows. With

between Rows would be low. However, those Cubic Bows,qq roys hetween the pair of servers, we observe in Figure

that did not experience losses will enter their convex regionis that the Rows now operate in the TCP mode of Cubic with
and thus their congestion window will grow faster and during o synchronization
S

the next congestion event, the number of dropped packe
will increase. This will bnally lead to a high synchronization However for the case of a remote client or distant data
between RBows. Figure 13 illustrates graphically our argumentsenters transfers, synchronization is likely to pop up. The
provided in this paragraph by zooming on a specibPc moment idmazon EC2 experiment in Figure 1b, where 10 Rows were
time of one simulation we performed. We observed a brst lossreated between France and the Amazon EC2 DC located in
event where only two Bows are affected. We next observe thallS, is a good illustration of this point. Additionally, since

the Bows that experience losses will soon again plateau arouritbw synchronization leads to a reduction of around 20% of
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increase by one MSS per RTT in the ranggnax !
2, Wmax + 2]. We call this modibcation LinCubic.

¥ Second, as we observed that the actual implementa-
tion was not accurately tracking the cubic curve, we
devised a version that fulblls this goal. We call this
modibcation AccuCubic.

Congestion window (packets)

% 20 20 60 80 100 To evaluate the impact of those different modibcations, we
Time (seconds) implemented them in ns2 and started observing their behavior
(a) Individual Congestion Window, 10 Bows in the case of a single Bow. We consider a link capacity equal to
1Mbps, a latency equal to 500ms and a buffer size equal to one
1300 ‘ ‘ ‘ ‘ BDP (41 packets). The network capacity is thigax .,
2 1200f - |-M ke - 1 el - - Hi - BDP +BS = 82 packets. In Figures 16a and 16b, we report
Euoo the evolution of the congestion window.
émoo We can observe that FC indeed plays a signibcant role.
z ey It globally worsens the situation for Cubic. We observe that
g %% - - -wmax ] LinCubic performs very well by precisely tracking the network
g 800 "7~ 80% wmax ] capacity with or without FC. We have observed also that
700 ‘ ‘ ‘ ‘ AccuCubic prefers that FC be turned off, but we do not have
0 20 Pine (secondey 8 100 a clear explanation for this phenomenon.
(b) Aggregate Congestion Window We further tested the potential benebt of those modibca-
tions in the case of 100 Bows competing for the bottleneck.
Fig. 14: Intra data center transfers - 10 Bows We consider various scenarios by varying the RTT from 100 to

500 ms and considering different buffer sizes frorit BDP

to 1 BDP. For each scenario, we performed 10 runs. We report
the number of synchronized Rows in the case of 500ms and a
buffer size equal to one BDP in Figure 17 for a typical run.
Results are consistent with the case of a single Row: LinCubic
noticeably decreases the number of synchronized Rows as well
as AccuCubic when FC is turned on. When FC is turned off,
only LinCubic performs better than Cubic.

ckets)
N N w
o (4} o
T T T

=
a1

At this stage, we believe that even if the behavior of
TCP Cubic can be improved, as exempliped by LinCubic
= 2 5 = 3 50 and AccuCubic, the solution to combat synchronization might

Time (seconds) not be only sought in the TCP implementation itself. Indeed,

Fig. 15: Individual Congestion Window, Intra data centert0Se improvements might always be partly mitigated by the

transfers - 100 Rows competition among Cubic Bows outlined in Section VI-C.
Solutions to the problem of synchronization should thus also
be looked for outside TCP itself, e.g., through the use of buffer
management mechanisms like RED or Codel [12].

the total trafpc, buffer sizes smaller than 20% of the expected

average BDP can lead to an under utilization of the available VIIl. CONCLUSION

bandwidth, specially if the maximum experienced RTT of the

trafpc exceeds 250ms.

Congestion window (pa
=
o

wo -«
S T

In this work, we have explored in detail the root causes
behind the synchronization of TCP Cubic RBows that can be

Even though it is not graphically shown in this article due easily observed through simulations for instance. We made
to the lack of space, additional experiments made betweeuse of a combination of experiments in a testbed, simulations
France and the Amazon EC2 data center in Ireland exhibiand some experiments in the wild to analyze the extent of the
also the presence of synchronization. phenomenon.

The controlled nature of our testbed enabled us to precisely
VIlI. ALLEVIATING SYNCHRONIZATION analyze the phenomenon of synchronization and discover its
root causes. Simple experiments in the wild (with a distant

In this section, we aim at investigating solutions to work eca gatacenter) conbrmed that the phenomenon can affect real
around the problem of synchronization faced by TCP Cubicygid transfers.

As the root of the problem lies in behavior of TCP around
the equilibrium point, we investigated the two following ap- ~ We discovered that while TCP cubic is known to provide
proaches: a form of fairness by making the window growth independent
of the RTT of the connection (which TCP New Reno is
¥  First, we linearize TCP Cubic when it operates closeunable to do as the window growth is tightly coupled to the
to its plateau. More precisely, we enforce TCP toRTT of each connection), synchronization is a subtle result
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. 16: Ns2 Simulations - A single Bow

100Mbps, RTT=500ms, 100 flows, WITH FC
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17: Ns2 Simulations -100 Bows, RTT=500ms

50 100 150 200 250
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(b) Without FC

some bandwidth, signibcantly increases the synchronization
phenomenon. Last but not least, even with a perfect estimation
of the bottleneck capacity, synchronization can occur starting
from an unsynchronized situation where some Bows loose
while some others do not. Indeed, the sources that did not
loose are likely to start probing aggressively (due to the shape
of the cubic function) which can result in massive losses for
all Bows later on. This can be observed especially if the RTT
is large. When the RTT is low for all connection, TCP Cubic
is quite immune to synchronization.

We proposed and evaluated two modibcations to the TCP
Cubic algorithm that aim at combating synchronization. They
improved noticeably the situation and we intend to explore
how they can combined with advanced queuing mechanisms
like CoDel, to further reduce synchronization.

We also want to explore data center scenarios with a high
dynamics in the number of Bows and especially a competition
between short and long Rows. Due to the noise induced by
short Bows, long Rows are likely to underestimate the network
capacity, which, as we have seen, can lead to too many packets
sent when reaching the actual capacity, and thus possibly,
synchronization.
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