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AbstractÑTCP Cubic is designed to better utilize high
bandwidth-delay product paths in IP networks. It is currently
the default TCP version in the Linux kernel. Our objective in
this work is to better understand the performance of TCP Cubic
in scenarios with a large number of competing long-lived TCP
ßows, as can be observed, e.g., in cloud environments. In such
situations, Cubic connections tend to synchronize each other and
this synchronization is higher than with TCP New Reno. We
investigate this phenomenon in detail through experimentations in
a controlled testbed, measurements with Amazon EC2Õs servers,
located in the US and simulations.
We demonstrate that several factors contribute to the appearance
of synchronization in TCP Cubic: (i) the rate of growth of the
congestion window when a Cubic source reaches the capacity of
the network and its relation to the RTT of the connection, (ii)
the way the congestion Cubic tracks the ideal cubic curve in the
kernel (as the congestion window grows in a discrete fashion in
units of MSS while the cubic curve assumes a ßuid window), (iii)
the competition among the Cubic sources and the aggressiveness
of the sources that did not experience losses during the last loss
episode.
We also propose and evaluate two propositions to the TCP Cubic
algorithm to alleviate the amount of packets lost during the
synchronization episodes.

I. I NTRODUCTION

Massive data transfers are common in typical cloud sce-
narios, either within the data center itself or between the
data center and the customer premise. In such a scenario, the
transport layer, namely TCP, is put under pressure and might
suffer performance problem, e.g., the TCP incast problem
(which is observed when a large number of storage devices
simultaneously send data chunks to a single machine leading
to congestion at the switch servicing the machine [1]).

Cloud environments are characterized by plenty of band-
width. Modern versions of TCP such as Cubic, are designed
to work efÞciently in such situations as they are able to probe
for available bandwidth in a non linear fashion, unlike TCP
New Reno, which inßates its windows by one MSS per RTT
in stationary regime. However, there is a price to pay for
being more aggressive: the fairness offered by Cubic and other
high speed versions of TCP is not as high as legacy TCP
versions [2]. Several studies also pointed out the appearance of
synchronization among competing Cubic ßows [3]. The latter
means that Cubic ßows, when competing for a bottleneck, tend
to loose packets at the time instant and the resulting aggregated
throughput time series exhibit a clear Cubic behavior as if a
single ßow was active.

In this work, we investigate the issue of synchronization
among TCP Cubic sources in detail. As a motivating example
of the problem, consider the time series of a total congestion

window of 10 Cubic TCP ßows established between the same
pair of sender/receiver that compete for a shared bottleneck,
obtained with ns-2, in Figure 1a. The clear Cubic shape that
appears regularly indicates that the ßows are synchronized
(more details on TCP Cubic is provided in Section III). Note
that the code of Cubic in ns-2 is a fork of the one in the Linux
kernel. One can obviously argue that the simulations set-up
does not catch the complexity of a real operational IP network,
and thus synchronization might be the result of idealized
simulation conditions. This is why we present in Figure 1b
the congestion window evolution of 10 transfers in parallel
between a server in Amazon data center of Oregon and a
server in our lab. We have obviously no control on the path, but
we can clearly observe some periods of high synchronization
(two of them highlighted here by red rectangles for an easier
reading).
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(a) Total window size (ns-2): 10 TCP Cubic ßows,sharing a common
bottleneck
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(b) 10 TCP Cubic transfers between France (I3S lab) and Amazon
EC2 data center of Oregon

Fig. 1: Synchronization in TCP Cubic

We study the extent and the root causes of synchronization
using an experimental approach with a testbed hosted in
our lab combined with simulations. The former enables to
experiment with actual protocol implementation in a controlled
environment while the latter permits to explore a wider set of
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network scenarios.

Our contribution to the study of the synchronization of TCP
Cubic are as follows:

¥ We experimentally establish the relation between the
existence and extent of synchronization with key pa-
rameters like RTT and buffer size. We demonstrate
the resilience of synchronization to background trafÞc,
and how the Fast Convergence option, which aims at
making Cubic more fair to fresh connections, catalyzes
synchronization. For this point and the subsequent
ones, we use New Reno as a reference point.

¥ We demonstrate that several factors contribute to the
appearance of synchronization in TCP Cubic: (i) the
rate of growth of the congestion window when a Cubic
source reaches the capacity of the network and its
relation to the RTT of the connection, (ii) the way the
congestion Cubic tracks the ideal cubic curve in the
kernel, (iii) the competition among the Cubic sources
and the aggressiveness of the sources that did not
experience losses during the last loss episode.

¥ We propose and evaluate two approaches to reduce
the level of synchronization and hence the loss rate
of TCP Cubic transfers. Perhaps more importantly, we
provide hints that synchronization is the price to pay to
have a high-speed TCP version that needs to explore
the available bandwidth in the network in a super-
linear manner. It is probable that we can alleviate
synchronization, as our modiÞcations of TCP Cubic
do, but eliminating it out completely will be a complex
task.

II. RELATED WORK

A. TCP Cubic

Various congestion control strategies for TCP have been
designed to meet the ever-changing networking requirements
of the Internet, especially Cubic TCP [4], which is the default
TCP version in recent Linux kernels, Fast TCP [5] or CTCP
[6].

The focus of this paper is on Cubic, which is characterized
by a Cubic window growth function [4]. The aim of Cubic
is to achieve a more fair bandwidth allocation among ßows
with different RTTs (round trip times) by making the window
growth independent of the actual RTT.

In order to understand how Cubic behaves in data centers,
we designed a ßuid model for Cubic, presented in [7], that
allows to predict various metrics, such as distribution of
the window sizes ofN long-lived competing connections,
throughput, RTT, loss rate and queue size. The model is
validated against ns-2 simulations in typical cloud scenarios.
The Þt is very good when Cubic operates in TCP mode, while
it is less satisfactory when in pure Cubic mode. The reason
behind this latter observation is that our model does not capture
the high synchronization among the competing ßows.

B. Synchronization

In [3], Hassayoun and Ros found that high-speed versions
of TCP may be prone to strong packet-loss synchronization

between ßows. The authors studied several high speed version
of TCP and observed, through simulation, the existence of
synchronization among sources for all ßavors of high-speed
TCP.

In [8], the same authors evaluate the potential impact of
the Random Early Detection (RED) [9] queue management
algorithm on high-speed TCP versions. They study the rela-
tion between buffer size, active queue management and loss
synchronization. Their study focuses on several metrics: loss
synchronization, goodput, link utilization, packet loss rate, and
convergence to fairness for high-speed ßows. For large buffers,
RED strongly reduces the synchronization rate as expected,
whereas with droptail, the fraction of synchronized sources is
often close to 100%. In contrast, with medium to small buffers,
the loss synchronization is roughly similar with both types of
queue management strategy.

III. B ACKGROUND ON TCP CUBIC

A. Window variation in TCP Cubic

When in congestion avoidance, TCP Cubic features two
modes of operations, the so-called TCP and Cubic modes
[4]. The TCP mode is to be used in low bandwidth delay
products (BDPs), while the Cubic mode is triggered for high
BDPs. Each mode corresponds to a speciÞc way of increasing
the window size and is determined by the following pair of
equations:

wc(t) = C(t ! VCubic )3 + wmax (1)

wtcp (t) = wmax (1 ! ! ) +
3!

(2 ! ! )
t

R(t)
(2)

where wmax is the congestion window prior to the last loss
event1, R(t) is the estimated RTT of the connection,! and
C are constant values usually set to0.2 and0.4, respectively,

andVCubic = 3
�

!w max
C . The congestion window sizecwnd(t)

is set tomax(wc(t), wtcp (t)) upon each ACK reception. TCP
Cubic is thus said to operate in Cubic mode (resp. TCP mode)
if the maximum iswc(t) (resp.wtcp ( t ) ).

The equation ofwc(t) is designed in such a way that
when a TCP Cubic connection is operating in the cubic mode,
it converges quickly towmax . Then it plateaus for a while,
before increasing again to probe the link to sense whether
more bandwidth is available in the path (see Figure 2).

Upon detection of a loss,wmax is set to the last congestion
window cwnd(t), before the congestion window be reduced
by 20%. In case the lastwmax was larger than the congestion
window when the loss is detected, and if the Fast Convergence
mechanism is applied,wmax is set to0.9 " cwnd. This is what
happens in Figure 1a, where we observe that the plateau is
sometimes at a lower level than the maximum.

Another major difference between Cubic and previous
TCP versions is that the congestion window increase is not
correlated to the RTT. Indeed the amount of packets by which
the congestion window must be increased depends only on
the time elapsed since the last congestion event. In contrast,

1Note thatwmax is varying over time but is constant between two loss
events. This is also the case forVCubic .
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with standard TCP, ßows with very short RTTs increase their
congestion windows faster than ßows with longer RTTs.

Concerning the TCP mode, we can note thatwtcp (t)
depends both on the RTT of the connection and the time
elapsed since the last loss event. Thus, in practice, when the
RTT is low, wtcp (t) ensures that the window increase of TCP
Cubic is not slower than one of New Reno.

B. TCP Cubic mode of operation

TCP operates either in TCP or Cubic modes. The Cubic
mode depends on the bandwidth delay product of the path,
through the value ofwmax , while the TCP mode depends on
the RTT. The net result, for a given path with a minimum
latency RT Tmin , is that TCP Cubic operates either in TCP
or in Cubic mode. We can observe an alternation of modes if
RT Tmin is below the threshold that triggers Cubic while it is
above when the buffer starts Þlling up and the RTT increases.
At 100 Mb/s, the latency of the path that ensures that TCP is
always in Cubic mode is 39 ms, while at 1Gb/s, it is 18 ms.

To Þnd those values, one needs to consider the difference
D (t, RT T, wmax ) = wc(t) ! wtcp (t). We can see in Figure 2
that this difference Þrst increases witht, then decreases and
increases again. We set RTT toRT Tmin aswtcp (t) decreases
with an increasing RTT. The minimum of the function is
obtained for:

t0(RT T, wmax ) =
�

!
C(2 ! ! )RT T

� 1
2

+ VCubic .

One next ÞndsRT Tmin such thatD (t, RT Tmin , wmax ) is
positive, which ensures that the Cubic mode dominates.

Fig. 2: Congestion window growth of TCP Cubic in Cubic and
TCP modes.

IV. EXPERIMENTAL SET-UP

A. Testbed

We have created a set of experimental scenarios in our
laboratory using the testbed presented in Figure 3. It consists
of 3 multi-core Dell servers, 2 acting as TCP client or server
and one as router. All links are 1 Gb/s links. The router uses
netem2 to control the path latency and capacity, and also the
buffer size at layer 3. We use the default FIFO/droptail as
server scheduling/queue management policy at the bottleneck.

Various scenarios are created by varying the latency and
buffer size. We set the buffer size at the router to{ 10%,

2http://www.linuxfoundation.org/collaborate/workgroups/networking/netem

30%, 50%, 100%} of the bandwidth delay product BDP (i.e.,
the product of the minimum latency and the capacity of the
path). For each scenario, we compare the performance of
Cubic with the ones of NewReno. NewReno is used here as a
baseline for comparison as it is known to be less sensitive to
synchronization than any high speed TCP version.

Fig. 3: Experimental network setup

B. Scenarios

We consider, similarly to [7], several typical cloud net-
working scenarios:

¥ Scenario A - Cloud-clients. We consider here a set
of clients that simultaneously download content from
a data center (DC). We assume that they share the 1
Gbps access link of the DC and that they have a low
path latency to the DC, 20 ms (a typical latency for
FTTH clients in France).

¥ Scenario B - Intra-DC. We consider a set of transfers
within a data center (DC) where the path capacity is
set to 1 Gbps while the latency is low, 1 ms, reßecting
the small physical distance between the servers.

¥ Scenario C - Inter-DC. This scenario is similar to the
previous one, except that the path latency is one order
of magnitude higher. We consider 50 ms of latency.

Links between machines in our testbed are at 1Gbps.
However, we cannot operate netem at such a high speed when
controlling both the capacity and the buffer size. We thus
constrain the capacity to 100 Mb/s and we inßate the latency
of the path in such a manner that the bandwidth-delay product
of the path be the same or similar to the consider scenario.

V. SYNCHRONIZATION IN TCP CUBIC

A. Cloud center scenarios

1) Scenario A (Cloud-clients): Table I contains the targeted
(ideal) parameters of the scenario, as well as the ones used in
our testbed due to our technical constraints. Note that we deÞne
hereafter the bandwidth-delay product of a path (BDP) as the
product of the capacity of the bottleneck and the minimum
latency of the path.

Ideal parameter Testbed parameter
Throughput 1 Gbps 100Mbps
RTT (ms) 20 200
Buffer size (packets) 50 [0.1, 0.3, 0.6, 1]* BDP
BDP (packets) 1667 1667

TABLE I: Cloud clients scenario
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We vary the buffer size (BS) at the bottleneck from 10%
of the BDP to 100% of the BDP for both Cubic and New
Reno. We report results only for 100% BDP owing to space
constraints.

Time series of the total window size of one of our
experiments taken at random (which were all quantitatively
and qualitatively similar), summed over all the connections, is
presented in Figure 4, for both Cubic and TCP New Reno.
From this Þgure, we note that:

¥ The congestion window for Cubic reaches larger val-
ues compared to New Reno. This means that the
number of packets aboveBDP + BS is larger in
Cubic than in New Reno, which causes more losses
with Cubic.

¥ Cubic ßows are more synchronized than New Reno.
This is indicated by the window reduction during loss
episodes closes to 20%. Indeed, a reduction of 20% of
the aggregated congestion window is only possible if
all sources experience packet looses simultaneously.
In contrast, in the New Reno case, ßows are less
synchronized giving an overall window decrease after
loss clearly smaller than 50% (NewReno decreases its
congestion window by 50% upon loss detection).
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Fig. 4: Total window size (packets)

2) Scenario B (Intra-DC): Table II contains the targeted
(ideal) parameters of the scenario, as well as the ones used in
our testbed.

Ideal parameter Testbed parameter
Throughput 1Gbps 100Mbp
RTT (ms) 1 10
Buffer 50 1000
BDP 84 84

TABLE II: Intra-DC scenario

The BDP for this scenario is equal to 84 packets. If one
adds to it a buffer size equal to the BDP, it gives an average of
1 packet per ßow which is low for our 100 ßows in parallel.
In such a scenario, the Linux kernel reduces automatically the
MTU to values as low as 40 bytes. This phenomenon leads to
different congestion window sizes to obtain a Þxed bandwidth,
making the analysis of results more complex. To work around
this issue, we used a larger buffer of 1000 packets.

We report in Figure 5 the time series of the total congestion
window of both Cubic and New Reno. Note that in this
case, Cubic operates in the TCP mode, and therefore, a

smaller synchronization is detected. Indeed, the reduction of
the total congestion window is less than 20%. Figure 6 shows
clearly that the number of losses per congestion event and
synchronized ßows approaches the one of TCP New Reno.
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Fig. 5: Total window size (packets)
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(a) Cubic, BS = 1000 packets
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Fig. 6: Number of synchronized ßow and lost packets at each
congestion epoch

3) Scenario C (Inter-DC): Table III contains the targeted
(ideal) parameters of the scenario, as well as the ones used in
our testbed.

Ideal parameter Testbed parameter
Throughput 1Gbps 100Mbp
RTT (ms) 50 500
Buffer 500 [0.1, 0.3, 0.6, 1]* BDP
BDP 4167 4167

TABLE III: Inter-DC scenario

For large BDP, the congestion window growth for New
Reno is much slower compared to Cubic, so we double the
simulation time for New Reno to 200 seconds instead of 100.
For the sake of space, we only we present the results for BS
= 0.6 BDP.

With the larger BDP of this scenario, Cubic TCP operated
in its cubic mode and we observe again a high synchronization
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of Cubic sources Ð see Figure 7, where the number of
synchronized ßows for Cubic is close to 100 while it is below
30 for NewReno.

(a) Cubic, BS = 0.6 BDP

(b) New Reno, BS = 0.6 BDP

Fig. 7: Number of synchronized ßow and lost packets at each
congestion epoch

B. Synchronization vs. background traffic

A well-known mechanism to combat synchronization con-
sists in introducing randomness into the network. This can be
done by introducing background trafÞc or inducing random
drops through an appropriate buffer management mechanism
such as RED [10].

It is known that RED can indeed break synchronization
among Cubic sources [8], even though the results in [8] where
obtained purely through simulation. We tested in our tesbed
the resilience of synchronization to background trafÞc. We
thus performed again experiments with Scenario C, where
synchronization was highly pronounced, adding 100 short
ßows during the experiment. These ßows are short scp transfer.
They form a Poisson process with mean inter-arrival time of
1s. The Þles sent through scp have a size equal to 2MB.

Background trafÞc starts at time t = 200 seconds in Figure
8. We can notice that the overall window is reduced and
reaches a value lower than 2BDP, but the Cubic shape of
the total window persists, meaning that all ßows are still
synchronized.

In this article we did not tested the case of ßows with het-
erogeneous RTTs. Moreover, experiments carried out in [11]
show that two ßows having different RTTs get synchronized.
Indeed, even though ßows gets different amount of bandwidth,
when congestion events occurs, both ßows suffer from packet
losses. Such results suggest that even if ßows have different
RTTs, synchronization occurs.

C. The impact of Fast Convergence

Fast convergence (FC) is designed to make Cubic more fair
as it leaves a chance to fresh ßows to grab some bandwidth.
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Fig. 8: Time series of window size (packets) with and without
background trafÞc, BS= 1 BDP

It is thus not advisable to unset this option in the general
case. Still, when focusing on the issue of synchronization,
FC becomes a potential suspect of synchronization. Indeed,
when performing FC, a source sets itswmax to a value lower
than the estimated available bandwidth (the congestion window
at the moment where loss occurs). As a consequence, when
the number of ßows is constant, as it is the case in our
experiments, when a source performs FC, it will reach the
available throughout (its share ofBS +BDP ) in an aggressive
manner Ðsee for instance Figure 1a. This aggressive behavior
around the equilibrium point can make all sources (even the
ones that would plateau at this level) loose some packets and
thus enforce their synchronization.

To test the relation between FC and synchronization, we
performed again experiments with Scenario C with an without
FC for a typical run. We report in Figure 9 the total window
time series with and without FC. As the extent of window
oscillations remains similar, we can conclude that FC is not
the only factor behind synchronization.
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Fig. 9: Time series of total window size (packets) with and
without FC, BS= 1 BDP

VI. ROOT CAUSE OF SYNCHRONIZATION

As observed in Section V, TCP Cubic experiences more
losses than standard TCP per congestion event. Therefore,
Cubic senders have a higher probability to be synchronized.

Intuitively, high speed TCP variants are more aggressive
and therefore, lead to a higher drop rate as compared to the
legacy New Reno approach, where the congestion window
grows linearly. While this is true for other high speed TCP
protocols, like High Speed TCP, in the case of Cubic, if the
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ßat part of the cubic function matches the optimal network
capacity, then we can expect to have (at least for this optimal
scenario) a low drop rate. Indeed, Cubic is supposed to slowly
enter and exit the ßat part.

In fact, several key reasons explain why TCP cubic ßows
synchronize each other:

¥ First, the way TCP cubic reaches the capacity of the
network, which might correspond to its equilibrium
point (when the cubic curve becomes ßat) or not,
depending on the accuracy of the estimate made.

¥ Second, the way the congestion window actually
tracks the cubic curve in the actual implementation can
worsen the synchronization phenomenon by letting
the source remains a smaller amount of time on its
plateau.

¥ Third, the competition among TCP Cubic ßows where
the aggressive nature of their probing process far
from the equilibrium point can lead to losses for all
competing ßows.

We discuss each of these points in details in the remainder
of this section.

A. Behavior of TCP Cubic around the equilibrium point

Let epochstart be the time right after a congestion event
(i.e. t0 = epochstart). Hence, att0, the Cubic window will
be equal to0.8 " last cwnd. Using Eq. (1), we can see that
theoretically, whatever the value ofwmax and the experienced
RTT are, wc(t) will reach wmax at tmax = epochstart +
VCubic . Furthermorewc(t) will reach wmax + 1, wmax + 2,
wmax +3 andwmax +4 at tmax +1.35s, tmax +1.7s, tmax +
1.95 andtmax + 2.15. Therefore, while there is 0.35s between
wmax + 1 andwmax + 2, there is only 0.2s betweenwmax +
3 and wmax + 4 respectively. Indeed, aswc(t) moves away
from wmax , it increases faster. Figure 10 provides a graphical
description of the period length between 2 successive expected
increases of the congestion window.

Fig. 10: Target Evolution

Consequently, three different scenarios can be drawn, based
on the relative positions of the ßat region and the total network
available capacity, i.e. BDP+BS. We seek to understand when
a source is going to send more than one packet in an RTT when
reaching the network capacity. Indeed, if each source adds a
single packet, like in New Reno, synchronization should be

mild. If they send two packets or more, synchronization will
be high.

First scenario:wmax = BDP + BS. If cwnd = wmax + 1
leads to a congestion, since betweenwmax + 1 andwmax + 2
there is a period equal to 0.35s, ßows with a total RTT (i.e.
propagation delay plus buffering time) smaller than 0.35s will
detect the congestion atwmax + 1. Flows with RTTs larger
than 0.35s can potentially detect the congestion only when
at wmax + 2 (i.e., in a single RTT, such a Cubic ßow will
increase twice its congestion window). Note that whatever the
RTT experienced by New Reno TCP, this last protocol is able
to detect a congestion when the congestion window exceeds
the total network capacity by only 1 packet, since it increases
its window by at most one MSS per RTT.

Second scenario:wmax = BDP + BS ! 1. When
wc(t) = wmax + 2, congestion occurs but since between
wmax +2 andwmax +3 there is a period equal to 0.25s, if the
total RTT is larger than 0.25s, the connection will potentially
increase its congestion window twice (or more depending on
the experienced RTT) ending with a congestion window equal
to wmax + 2 or more.

Third scenario:wmax = BDP +BS +1. If wc(t) = wmax
already exceeds the total network capacity by one packet, since
betweenwmax andwmax + 1 there is a period equal to 1.35s,
theoretically, only ßows with an RTT larger than 1.35s will
increase twice their congestion windows before detecting a
congestion. Hence, after a congestion event,wmax will be set
again towmax = BDP + BS + 1 and the number of losses
will be small. We want to highlight that the theoretical Cubic
target is able to converge to awmax = BDP + BS + 1 from
any wmax value, like shown in Figure 11.
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Fig. 11: Converge properties of the optimal congestion window
(BDP + BS = 80).

To sum up the three above scenarios: (i) overestimating
the bottleneck is not a big issue as there is little chance
that the sources increases several times its congestion window
when entering the ßat region (it should be larger than 1.35s);
(ii) precisely estimating the bottleneck precisely means that
the source will be too aggressive if the RTT is larger than
0.35 s and (iii) if the source underestimates the capacity, the
RTT for which it becomes too aggressive is 0.25s. The latter
scenario is thus the more dramatic one. We can note that Fast
Convergence, that forces to set itswmax equal to0.9 " wc(t)
upon a loss leads exactly to the latter scenario. FC is thus a
net contributor to the too high aggressiveness of a TCP Cubic
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source.

As an illustrative example, the Amazon EC2 experiment
presented in Figure 1b was a case where the base RTT
(measured by ping) was 190 ms. Hence, when adding the
buffer size along the path (which we do not know), there is a
high probability that the RTT will be above 250 ms. This RTT
combined with the use of Fast Convergence explains why we
observe episodes of synchronization.

The above analysis assumes a perfect source in isolation. In
practice, the actual implementation as well as the competition
among Cubic ßows worsen the situation as we discuss below.

B. Tracking of cubic function in the actual implementation of
TCP Cubic

In the real life, the tracking of the target window is not
perfect. We have extracted the algorithm used by TCP Linux
from ns-2, which is supposed to be the same as the one in
some Linux kernels, to build our own simulator and be able
to trace the several variables used inside. We have found that,
assuming a constant reception of ACKs and a total RTT of
one second, when the congestion window reacheswmax , it
will stay in the ßat region for period shorter to 1.35s (around
0.8s as we can see in Figure 12). Such a result was conÞrmed
by ns-2 assuming the same RTT. Staying a shorter period on
the plateau can lead to have too many losses when getting
above the network capacity.
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Fig. 12: More real Cubic congestion window evolution.

C. Competition around the equilibrium point

Let us suppose that during a given congestion event, the to-
tal capacity was exceeded byn packets only (wheren is equal
to the number of ßows) as the legacy New Reno version of
TCP does, and that the congestion window of each Cubic ßows
was equal to the actual share that each connection deserves.
In this scenario, it is highly likely that not every ßow would
experience a packet loss. Put differently, the synchronization
between ßows would be low. However, those Cubic ßows
that did not experience losses will enter their convex region,
and thus their congestion window will grow faster and during
the next congestion event, the number of dropped packets
will increase. This will Þnally lead to a high synchronization
between ßows. Figure 13 illustrates graphically our arguments
provided in this paragraph by zooming on a speciÞc moment in
time of one simulation we performed. We observed a Þrst loss
event where only two ßows are affected. We next observe that
the ßows that experience losses will soon again plateau around

the equilibrium point. In contrast, the ones that did not loose
enter the aggressive probing part of the cubic curve. Even, if
they are just leaving their plateau as it is the case here, the
number of losses that they induce in the buffer is such that all
four sources losse packets at the same time instant, i.e., they
become synchronized.
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Fig. 13: Cubic leading to high synchronization

D. Discussion

From the analysis presented above, it is clear that the
RTT of the connection plays a key role to determine the
level of synchronization we might expect. Referring back to
the methodology presented in Section V, it becomes clear,
in light of what we discussed in this section, that increasing
the RTT to obtain the same BDP as in the ideal cloud
scenarios that we devised, was introducing a bias towards more
synchronization. For the intra data-center scenario (scenario B)
where the ideal RTT was 1ms, synchronization is likely not
to occur. This is conÞrmed by our experimental results (see
Figure 6a) because the RTT in the experimental testbed is still
low (10ms). It should be the same in the inter data-center
case (scenario C) where the ideal RTT is 50 ms, while we
observed synchronization by working at 500 ms. It is even
highly possible that Cubic operates in the TCP mode and
not the Cubic mode in such a scenario, in which case the
means-Þeld model that we proposed in [7] demonstrated that
no synchronization should be present.

As illustrative examples of the above points, we report in
Figure 14a a typical experiment made between a pair of servers
in the Oregon data center of Amazon where the RTT was in
the order of a ms. We never observed any synchronization in
this case (out of the numerous trials we made). While Figure
14a reports the congestion window of each individual ßow,
Figure 14b reports the aggregate congestion window and we
can observe that it never decreases by 20% (as 80% of 1200
is 960 and we are always above this line).

The previous experiment was obtained with 10 ßows. With
100 ßows between the pair of servers, we observe in Figure
15 that the ßows now operate in the TCP mode of Cubic with
no synchronization.

However for the case of a remote client or distant data
centers transfers, synchronization is likely to pop up. The
Amazon EC2 experiment in Figure 1b, where 10 ßows were
created between France and the Amazon EC2 DC located in
US, is a good illustration of this point. Additionally, since
ßow synchronization leads to a reduction of around 20% of
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(a) Individual Congestion Window, 10 ßows
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Fig. 14: Intra data center transfers - 10 ßows
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Fig. 15: Individual Congestion Window, Intra data center
transfers - 100 ßows

the total trafÞc, buffer sizes smaller than 20% of the expected
average BDP can lead to an under utilization of the available
bandwidth, specially if the maximum experienced RTT of the
trafÞc exceeds 250ms.

Even though it is not graphically shown in this article due
to the lack of space, additional experiments made between
France and the Amazon EC2 data center in Ireland exhibit
also the presence of synchronization.

VII. A LLEVIATING SYNCHRONIZATION

In this section, we aim at investigating solutions to work
around the problem of synchronization faced by TCP Cubic.
As the root of the problem lies in behavior of TCP around
the equilibrium point, we investigated the two following ap-
proaches:

¥ First, we linearize TCP Cubic when it operates close
to its plateau. More precisely, we enforce TCP to

increase by one MSS per RTT in the range[wmax !
2, wmax + 2]. We call this modiÞcation LinCubic.

¥ Second, as we observed that the actual implementa-
tion was not accurately tracking the cubic curve, we
devised a version that fulÞlls this goal. We call this
modiÞcation AccuCubic.

To evaluate the impact of those different modiÞcations, we
implemented them in ns2 and started observing their behavior
in the case of a single ßow. We consider a link capacity equal to
1Mbps, a latency equal to 500ms and a buffer size equal to one
BDP (41 packets). The network capacity is thuswmax ideal =
BDP + BS = 82 packets. In Figures 16a and 16b, we report
the evolution of the congestion window.

We can observe that FC indeed plays a signiÞcant role.
It globally worsens the situation for Cubic. We observe that
LinCubic performs very well by precisely tracking the network
capacity with or without FC. We have observed also that
AccuCubic prefers that FC be turned off, but we do not have
a clear explanation for this phenomenon.

We further tested the potential beneÞt of those modiÞca-
tions in the case of 100 ßows competing for the bottleneck.
We consider various scenarios by varying the RTT from 100 to
500 ms and considering different buffer sizes from0.1# BDP
to 1 BDP. For each scenario, we performed 10 runs. We report
the number of synchronized ßows in the case of 500ms and a
buffer size equal to one BDP in Figure 17 for a typical run.
Results are consistent with the case of a single ßow: LinCubic
noticeably decreases the number of synchronized ßows as well
as AccuCubic when FC is turned on. When FC is turned off,
only LinCubic performs better than Cubic.

At this stage, we believe that even if the behavior of
TCP Cubic can be improved, as exempliÞed by LinCubic
and AccuCubic, the solution to combat synchronization might
not be only sought in the TCP implementation itself. Indeed,
those improvements might always be partly mitigated by the
competition among Cubic ßows outlined in Section VI-C.
Solutions to the problem of synchronization should thus also
be looked for outside TCP itself, e.g., through the use of buffer
management mechanisms like RED or Codel [12].

VIII. C ONCLUSION

In this work, we have explored in detail the root causes
behind the synchronization of TCP Cubic ßows that can be
easily observed through simulations for instance. We made
use of a combination of experiments in a testbed, simulations
and some experiments in the wild to analyze the extent of the
phenomenon.

The controlled nature of our testbed enabled us to precisely
analyze the phenomenon of synchronization and discover its
root causes. Simple experiments in the wild (with a distant
EC2 datacenter) conÞrmed that the phenomenon can affect real
world transfers.

We discovered that while TCP cubic is known to provide
a form of fairness by making the window growth independent
of the RTT of the connection (which TCP New Reno is
unable to do as the window growth is tightly coupled to the
RTT of each connection), synchronization is a subtle result



Proceedings of the 2014 26th International Teletraffic Congress (ITC)

978-0-9836283-9-2 c
 2014 ITC

(a) With FC

(b) Without FC

Fig. 16: Ns2 Simulations - A single ßow
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Fig. 17: Ns2 Simulations -100 ßows, RTT=500ms

of the interaction between: (i) the way TCP Cubic reaches
the capacity of the network, (ii) the relation between the
RTT of the connection and the window growth of the cubic
function that occurs at speciÞc time instant. In addition, Fast
Convergence, that biases the estimate of the capacity made
by TCP Cubic to give a chance to other connections to grab

some bandwidth, signiÞcantly increases the synchronization
phenomenon. Last but not least, even with a perfect estimation
of the bottleneck capacity, synchronization can occur starting
from an unsynchronized situation where some ßows loose
while some others do not. Indeed, the sources that did not
loose are likely to start probing aggressively (due to the shape
of the cubic function) which can result in massive losses for
all ßows later on. This can be observed especially if the RTT
is large. When the RTT is low for all connection, TCP Cubic
is quite immune to synchronization.

We proposed and evaluated two modiÞcations to the TCP
Cubic algorithm that aim at combating synchronization. They
improved noticeably the situation and we intend to explore
how they can combined with advanced queuing mechanisms
like CoDel, to further reduce synchronization.

We also want to explore data center scenarios with a high
dynamics in the number of ßows and especially a competition
between short and long ßows. Due to the noise induced by
short ßows, long ßows are likely to underestimate the network
capacity, which, as we have seen, can lead to too many packets
sent when reaching the actual capacity, and thus possibly,
synchronization.
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